樹年輪地形學評估崩塌歷史活動度

之應用案例探討

林伯勳* 蕭震洋** 柯傑夫*** 詹明勳**** 冀樹勇*****

摘 要

本文應用樹年輪地形學配合遙測技術,評估鐵立庫集水區境內大崩塌活動度;於室內透過遙測 技術初步判釋崩塌滑動邊界,再赴野外現勘確認滑動邊界正確性,並檢視鄰近是否存在張力或剪切 裂縫、崩崖以及崖錐等地表特徵;同時,針對崩塌引致地表特徵致使樹木傾倒或彎曲歪斜,予以採 集大量樹芯樣本,續以樹年輪地形學分析崩塌歷史滑動年分;最後,相關成果亦與遙測影像進行比 較驗證及探討歷年強降雨事件之關連性。經分析顯示,鐵立庫大崩塌右翼區域及鐵立庫明隧道旁崩 塌之左翼區域近期滑動明顯,尤以防汛期間或遭逢颱風豪雨侵襲後更需特別留意,以免造成道路中 斷及河道淤積等相關災情。

關鍵字:樹年輪地形學、鐵立庫大崩塌、崩塌活動度

一、前 言

樹年輪學(Dendrochronolgy)為年輪系統性 且具時序性之科學研究,目的為鑑定樹木某一年 輪應屬某一年代之生長及估算樹齡,故亦稱樹年 輪鑑定(Tree-ring Dating),其鑑定時間精度係 以「年」為基本單位(Alestalo, 1971;于國安, 1972);其應用課題甚廣,如森林經營管理、古 水文氣候學、溫寒帶升降變遷、土壤沖蝕率及動 物遷徙行為等。一般而言,樹木具有呼吸、蒸 散、光合及同化等四項生長機制;其中同化 (Assimilation),又稱為合成代謝,係指樹木由 外界環境獲取營養物質轉變成自身的組成物質, 並且儲存能量的變化過程,再依當年水文降雨條件,形成不同寬窄疏密年輪(Annual Ring);若考量崩塌、落石、淹水、雪崩、火山爆發、旱災、野火、地震、土石流等天然災害所引致地形效應(Geomorphological Effect)(Shroder, 1978),造成水分供應差異影響干擾樹木生長(Braam et al., 1987),係採樹年輪方法據以鑑定崩塌塊體滑動(Mass Movement)或反應地景演化過程(Landscape Evolution)等相關研究,統稱為樹年輪地形學(Dendrogeomorphology),現為國際研究天然災害之新興議題,供以回溯歷年災害事件曾發生時間點及頻率次數(Stoffel et al., 2010; Lopez et al., 2012)。就集水區範圍而

^{*} 中興工程顧問社防災科技研究中心環境資源監測組組長

^{**} 中興工程顧問社防災科技研究中心副研究員

^{***} 中興工程顧問社防災科技研究中心前助理研究員

^{****} 嘉義大學森林暨自然資源學系副教授

^{*****} 中興工程顧問社大地工程研究中心、防災科技研究中心主任

言,遭受颱風豪雨事件引致災害類型,最常見為 崩塌,且為主要供砂料源;此外,當發生崩塌影 響範圍涵蓋或涉及保全對象,其財產損失將大 增,更威脅至民眾生命之安全;故若能事前瞭解 掌崩塌活動度,有助於減低災害之發生及損失。

所謂崩塌活動度(Landslide Activity),即 是崩塌於時間及空間上所呈現形態(Spatial-Temporal Pattern),如崩塌面積、崩塌深度以及 崩塌體積、崩塌滑動邊界、崩塌發生頻度(次 數、週期);以往研究通常可經由地表形貌如張 力或剪切裂縫,崩崖以及崖錐等崩塌特徵,用以 瞭解過去崩塌空間活動範圍(或邊界),但若要 瞭解崩塌時間活動度,則需要裝設相關監測儀器 且累積達某一時期之代表性事件監測資料,惟維 護成本所費不貲。依此,本文以石門水庫上游艾 利颱風災害引致抬耀溪集水區境內大崩塌地為 例,於室內透過遙測技術初步判釋崩塌滑動邊 界,再赴野外現勘滑動邊界正確性,再利用現存 於崩塌地及其周緣上樹木,藉由樹年輪地形學加 以鑑定歷史滑動年分,據以重建崩塌歷史活動 度,瞭解近期滑動潛勢區域分布,供作後續工程 治理規劃或災害影響範圍劃設之參考。

二、文獻回顧

集水區土砂生產來源為坡面崩塌、沖蝕及河 道沖刷等三種,其中,坡面崩塌地為主要土砂生 產來源。周恒(1967)依水土保持觀點提出概 念,岩層及土砂在地表移動現象可分為崩、坍、 塌、滑、落、陷等六種分類;藤原明敏(1970) 解釋崩塌泛指地表經風化作用而破壞的岩屑及土 壤,於重力影響下,向下運動的各種作用;陳信 雄(1995)認為一般位於台地、丘陵地或山坡 地,由於土體失去平衡,向下方或側向移動之現 象屬之;崩塌地依據不同崩塌面積、深度及量體 又可分為淺層崩塌及大規模崩塌等兩類(南哲 行,2010)。以下依序回顧並說明崩塌規模類型 定義,崩塌地形邊界判釋以及崩塌歷史活動度等 相關文獻。

(一)崩塌規模類型

日本國土交通省砂防部依據崩塌規模大小, 將崩塌分為「深層崩壞」及「表層崩壞」兩類 (日本土木研究所,2009)。其中「表層崩壞」 定義為滑動深度介於 0.5 至 2 公尺之間(即為植 生根系所能生長的範圍),反之則屬「深層崩 壞」(南哲行,2010)。我國中央地質調查所訂 出之「岩屑崩滑」及「岩體滑動」兩大類別的分 類,與日本定義相似,假定不同滑動面深度的構 想,並定義大規模崩塌面積常在 1 公頃以上且崩 塌平均深度約 5~10 米以上。前述表層崩壞、岩 屑崩滑意指淺層崩塌,而深層崩壞及岩體滑動則 為大規模崩塌消動案例與相關崩塌量體推估方 法,討論各式方法之適用性,據以發展適用於本 土之簡易評估方法。

(二)崩塌滑動邊界判釋

中央地質調查所早期皆以航照判釋大規模崩 塌地地表特徵,隨著科技進步,個人電腦性能提 升、高解析度衛星影像產製,以及數值地形高精 度化,故目前皆以改採衛星影像及數值地形判釋 地形及地滑、土石流等地質災害區域,實為應用 趨勢(潘國樑,2006);羅佳明等人(2009)以 PIV 影像分析軟體,應用多時期地形圖及遙測影 像判釋紅菜坪地滑特徵; Lo et al. (2011) 以小林 村崩塌事件前航照及數值地形,用以判釋該區地 表張力裂縫;魏倫瑋等人(2012)以莫拉克災害 前之遙測影像及數值地形及參考 Soeters and Van Western (1996) 所定義屬於岩體滑動判釋原則, 判釋出莫拉克風災後形成大規模崩塌地,加以確 認崩崖及張力裂縫等地貌特徵,其滑動邊界與莫 拉克颱風後崩塌結果相近,證明該法確實可有效 圈繪且可信度頗高;近期中央地質調查所官方網 頁於發布新聞稿更明確指出利用空載 LiDAR 施測 技術,確可濾除地表植被,並分析可能發生大規 模崩塌地形,以及判釋大規模崩塌有關冠部、多重 山脊、崩崖與裂縫等微地形特徵,如圖1及圖2。

財團法人中興工程 顔問社 SINOTECH ENGINEERING CONSULTANTS, INC.

(修改自:日本土木研究所,2008;中央地質調查所,2010)

圖 1 大崩塌地地表特徵

(摘自:魏倫瑋等人,2012) 圖 2 荖濃溪上游段之大規模崩塌地貌特徵 及滑動邊界

(三)崩塌歷史活動度

位居影響保全對象的潛在大規模崩塌區域, 常會架設地表伸縮儀、傾斜儀及傾斜管等儀器, 以即時監測崩塌滑動時間,但監測資料僅從儀器 架設後始有紀錄,且不易有立即成效。山坡常有 木本植種之樹木生長,且木本植種具有記錄年輪 的特性,利用樹輪分析鑑定木本植種年分,並將

中興工程·第124期·2014年7月·PP. 71-84 http://www.sinotech.org.tw/journal/

樹或木頭系統化定年研究(于國安,1972); Alestalo(1971)以樹年輪學分析樹木之反應材, 進行判斷崩塌地歷史滑動時間。國外研究利用崩 塌滑動體鄰近針葉樹年輪確定歷史滑動時間,探 討其與崩塌或與天然災害之相互關連性(Paolini and Villalbam, 2010; Carrara and O'Neil, 2002; Lopez et al., 2012)。國內柯傑夫(2010)曾於石 門水庫集水區崩塌地,使用樹年輪判斷崩塌地冠 部歷史滑動時間,並與室內崩塌模型滑動機制、 崩塌外觀形態以及破壞時間特性進行比較。

利用樹年輪地形學可鑑定滑動或反應證明地 貌變動現象(Alestalo, 1971),其主要研究工具 為樹木的年輪,進行年輪地形學方面的研究前, 研究者必須了解樹木形成年輪的基本機制。樹木 的木質形成有週期性的變化(王松永和丁昭義, 1979),在木質部層的斷面會出現生長輪,通常 一年具有一個生長期,形成生長輪,就稱之爲年 輪。於一年內,生長季節早期及末期木材會形 成,其這兩類的木材稱爲早材(Early Wood)及 晩材(Late Wood)。影響年輪形成因子眾多且 造成年輪鑑定之不確定性與存在可能誤差,可用 樹木生長因子集合原理公式(Principal of Aggregate Tree Growth)(Cook and Kairiukstis, 1990)加以描述之,如下:

 $Rt = At + Ct + \delta D1t + \delta D2t + Et$ (1)

式中 At = 樹木年歲因子; Ct = 氣候因子(含溫 度,降雨等大範圍因素); δ D1t = 局部性森林擾 動因子(如崩塌,土石流等災害因素); δ D2t = 整體性森林擾動因子(如風害,伐木及森林大火 等因素); Et =其他無法量化人為因子

上述中局部性的森林擾動因子(δ Dlt)為樹 年輪地形學主要研究課題及方向(如圖 3),而 國外學者進行土石流及崩塌造成生長影響之案例 研究,如圖 4;相關研究(Schroder, 1978; Stoffel *et al.*, 2010)亦指出除張力裂縫及崖崩等 地表特微,崩塌、土石流對森林造成局部性干 擾,而影響樹木生長,大致分成以下4種情況:

(修改自: Cook and Kairiukstis, 1990)

(摘自:Lopez et al., 2012)

圖 4 以樹年輪判釋崩塌歷史滑動年分示意圖

- 死亡:樹根受崩塌影響而移動,土體拉扯造成 根部嚴重受傷甚至拉斷而導致樹死亡。
- 樹皮受傷:崩塌同時可能會造成落石或土石流 等現象,其落石碰撞或土石流滑動摩擦而造成 樹皮受傷。
- 生長抑制或生長釋放:崩塌而導致土壤水分降 低,使樹木生長被抑制,就如同死亡的情況。
 另崩塌地及其生長周緣樹木,若樹根無受傷且 土壤、水文狀況也沒大幅改變,但因同一區域 的樹減少,造成剩餘樹木的陽光及水補充增 加,故造成生長釋放。
- 4. 反應木材形成: 崩崖、坡面裸露區或張力裂縫

等地形擾動區域,常可觀察到傾斜的樹,樹會 因傾斜而為達成本身的力平衡,而造成反應木 材形成,而反應材可分成針葉樹的被壓材以及 濶葉樹引張材(王松永和丁昭義,1979)。

基此,目前相關研究更明確鑑定屬於滑動的 生長干擾(δDlt),必須透過樹輪寬度標準化 (Standarization),再建立研究區域的樹輪主年 表(Reference Chronology)及進行交互定年;最 後透過樹木歷史生長干擾分析,始得以逐一濾除 雜訊,進行崩塌地歷史滑動年分分析(Schroder, 1978;Lopez *et al.*,2012)。

三、研究區域

(一)環境溉述

本研究區域位於抬耀溪集水區,該集水區位 於大漢溪流域上游之玉峰溪支流上,溪流中、下 游分別與產業道路、明隧道交會,集水面積約為 2.23km²,佔石門水庫集水區總面積約 29%,全 區呈現東南-西北向之扁平形,區域內坡度多屬六 級坡(即坡度超過 55% 至 100%),全區平均坡 度約為 60%,且順向坡地形十分發達,尤以坡向 東南向至南向易發生順向坡,如圖 5 所示。就地 質概況及構造而言,其境內出露之岩層地質破 碎,大部分為漸新世乾溝層、大桶山層,漸至中

■財團法人中興工程 顔間社 ■ SINOTECH ENGINEERING CONSULTANTS,INC.

新世木山層、大寮層及沉積岩等,而集水區內主 要斷層為羅山斷層,其走向屬為東北-西南向之特 性,顯示流域內地質演化過程主要承受來自東南 方之擠壓力量,近期未有明顯活動跡象。

(二)歷史災害

抬耀溪集水區於民國 93 年遭受艾利颱風挾 帶豪雨連日侵襲,最大一日降雨超過 50 年重現 期距之暴雨量,而此場颱風事件所引致之崩塌地 數量亦為歷年之最,其中以鐵立庫大崩塌及明隧 旁崩塌面積較大,約計2.60公頃(如圖6),且 其潛在崩塌土砂量體為鉅;其災害發生時,嚴重 威脅當地聚落(石磊以及復華等兩聚落)及位於 抬耀溪中游與產業道路交會處聯外交通附近,當 時溪流與產業道路交會處上游,因豪雨引致而產 生大量崩塌與落石,大量雨水沿著坡頂處張力裂 縫灌入土體之中,導致產生大面積崩塌,其崩落 土石溢流至下游約 250m 並堆置於復華道路上, 同時造成道路上方明隧道結構體遭土石撞擊而毀 **損破壞,並致使道路交通阻斷以及河道防砂結構** 物嚴重受損。另於災害後至現地勘查結果顯示, 現地地表裸露情況明顯且植生稀疏,且坡趾下方 堆積大量崩積土,目地下水位甚高,仍不時有滲 水、湧水等情況產生,坡冠位置持續向上延伸, 似有崩退及向源侵蝕之現象、處於不穩定狀況、如 圖7所示。

中興工程·第124期·2014年7月·PP. 71-84 http://www.sinotech.org.tw/journal/

圖 7 崩塌地災後環境照片圖

四、樹年輪地形學評估崩塌活動度

本文以鐵立庫大崩塌及明隧旁崩塌為研究案 例,應用樹年輪地形學配合遙測技術,評估鐵立 庫集水區境內大崩塌近期活動影響範圍,再與遙 測影像進行比較驗證及探討歷年強降雨事件之關 連性。以下依序說明分析過程及相關結果。

(一)崩塌滑動邊界判釋

坡度圖及陰影圖為反應地形起伏且提供視覺 判斷絕佳依據,故國外常組合坡度圖及陰影圖兩 者,作為地表地形判釋基礎,亦有開發對應專利 程式,如日本 Chiba 博士於 2008 年所提出赤色 立體地圖(Red Relief Image Map),係採用空載 光達產製之數值地形為基底,依不同觀測對象設 定陰影圖的成像範圍,再組合對應同一個像元之 坡度值,組成一張以紅色色階為標準的地形貌判 釋地圖(Chiba *et al.*, 2008)。

基於上述研究成果,本研究以坡度圖及陰影 圖作為崩塌滑動邊界判釋之基礎資料,以有效圈 繪崩塌地滑動邊界,利用歷史空載 LiDAR 產製 地形資料及其同步施測航照判釋劃設大規模崩塌 地表特徵。首先,透過坡度圖描繪坡度變化較大 且連續之線性區,為避免遺漏,透過陰影圖檢查 前次繪製成果,再者,應用航照進行比對且濾除 人工設施所造成坡度變化大之連續線,最後,應

用 ArcScene 套疊數值地形及航照比對滑動塊體 邊界是否適當(如圖 8),其判釋成果如圖 9 至 圖 10 所示;並赴現勘確認該崩塌地潛在外擴面 積之地表特徵(如剪切裂縫、張力裂縫以及近期 滑動邊界、疑似滑動邊界等),檢視判釋成果之 正確性,如圖 11 所示。

- (a) 坡度圖
- (b) 陰影圖

(c)套疊數值地形及航照示意圖 圖 8 應用遙測圖資判釋崩塌滑動邊界

圖 9 鐵立庫明隧道旁崩塌滑動邊界圖

圖 10 鐵立庫大規模崩塌滑動邊界圖

圖 11 鐵立庫大崩塌及明隧道旁崩塌地貌特徵 現勘照片圖

(二)樹芯取樣方式

為確實評估崩塌活動度,故需有效控制樹芯 取樣樣本品質具一致性且代表性,原則上儘量於 相同地形地貌及水文氣候環境進行取樣,如山稜 線位置,海拔高程、坡向及坡度接近,亦即生長 條件狀況一致性,均化空間變異性;惟沿崩塌地 地形特徵樹種生長複雜且分布非一致,無法僅對 單一樹種進行取樣,但針對相同樹種則採用同一 或相近年齡進行取樣,為求年輪生長時序上變異 性不大,進以有效分析及崩塌歷史滑動年分;本

財團法人中興工程 顔間社 SINOTECH ENGINEERING CONSULTANTS, INC.

研究曾於 2012 年 6 月至 7 月赴鐵立庫兩處崩塌 地外擴面積鄰近樹種進行樹芯取樣,計有 183 株 樹,其空間分布,如圖 12 所示;同時,蒐集柯 傑夫(2010)曾於 2009 年 6 月於鐵立庫大崩塌 冠部進行樹芯取樣,計有 10 株樹,故總計 193 株樹,可供比較分析;圖 13 為各取樣樹種數量 統計直方圖,其中屬於針葉樹種,包含「柳 杉」、「香杉」及「馬尾松」;屬於闊葉樹種, 包含有「台灣赤楊」「楓香」、「樟樹」、「木 荷」等四種,而取樣量以闊葉樹種居多,又以台 灣赤楊及柳杉等樹芯樣本為主。於後續進行樹年 輪分析時,因針葉林種較於闊葉林種,其樹年輪 較為明顯且偽輪及缺輪較少,原則上以針葉林年 輪資料為主,而以闊葉林為輔。

圖 12 鐵立庫兩處崩塌地鄰近樹芯取樣空間分布

中興工程·第124期·2014年7月·PP. 71-84 http://www.sinotech.org.tw/journal/

另外,為確實完成評估以上兩處崩塌歷史活動度,從中再分成實驗組及對照組等兩個樹芯樣 區進行定年,其分析目的如下:

1. 實驗組(樹木生長曾受崩塌活動干擾):鐵立 庫明隧道旁崩塌及鐵立庫大崩塌

實驗組主要目的分析樹木受崩塌活動造成生 長干擾之形成年輪疏密變化,用以進行崩塌歷史 滑動年分分析,於其鐵立庫大崩塌鄰近地形特徵 區域,共有 161 株樹,其樹齡大致 30 年以內, 少部分則為 50 年;主要坡向朝北,位居高程平 均為 1,000 公尺,其坡度約為 30 度;鐵立庫明隧 道旁崩塌:共有 17 株樹,其樹齡大致 30 年以 內,坡向朝西,平均高程為 875 公尺,其坡度較 陡,約為 35 度。

對照組(樹木生長未受崩塌活動干擾):鐵立 庫大崩塌地稜線上方森林區

對照組主要目的建立樹輪主年表(Reference Chronology),再用以濾除氣候因子(Ct)並鑑 定實驗組生長干擾(δDlt)之年輪反應訊號; 取樣位置距鐵立庫大崩塌地稜線上方 200 公尺未 受崩塌活動干擾之森林區,共計 15 株樹,其樹 齡大致 40 年以內,主要坡向朝北,與鐵立庫大 崩塌地一致,平均高程為 1,300 公尺,其坡度約 30 度。

(三) 樹年輪交互定年

樹年輪交互定年主要目的為確定每個年輪的 形成年分,以建立準確性高之年輪寬度變化年 表,利於進行生長干擾分析,以掌握崩塌於時空 活動度。生長在同一生態環境中的樹木,其接受 外界的氣候及限制條件相同,故年輪變化時序應 屬一致,但實際上樹木受微氣候環境變動或本身 生理影響,如不明顯或不連續輪(Discontinous Ring)、偽輪(False Ring)、重年輪(Double Ring)、丟失輪(Missing Ring)、霜輪(Frost Ring)等變異現象發生(詹明勳,1999)。其交 互定年依序分成「目視定年」、「圖表定年」、 「統計定年」等三種階段性分析,如圖 14 所示。

上圖中以目視定年最為耗時且為關鍵,係因 將主導影響整體交叉定年過程之分析品質及結果 正確性。以下分項說明交互定年過程步驟如下:

 目視定年(Visual Dating):由人體肉眼透過 高解析力光學立體顯微鏡觀察且依樹輪之切線 及法線,測量出代表性的樹輪寬度每一年輪的 界限,尤其是特別寬窄密度變化之年輪,以及 辨識是否樹芯色澤、木胞結構特徵、年輪寬度 具一致性,如圖15所示。

圖 15 目視定年利用高解析力光學立體顯微鏡辨 識樹輪寬度示意圖

 圖表定年(Graphic Dating):因目視定年尚 因人為判斷不一,以及取得不同樹年輪芯存有 偽輪或丟失輪等所造成生長變異(Groth Change),導致年輪於時間序列生長期距產 生差異,可藉由專業樹年輪時間序列擷取軟 體,如TSAP-Win[™] Program 進行圖表定年, 並仔細比較各樹芯年輪寬度變化(Stokes and Smiley, 1968),亦即核對特別寬或窄年輪於 時間序列變化是否相符,將年輪寬窄型態眾多 序列延伸或修正連貫,據以建立精確年輪寬度 年表(詹明勳, 1999),如圖 16 所示。

财團法人中興工程顾問社

INOTECH ENGINEERING CONSULTANTS, INC.

3. 統計定年(Statistical Dating):當以上兩項定 年分析完成後,進而可藉 COFECHA 程式 (Holmes, 1983)進行交互定年的相關檢驗, 以確定量測和交互定年準確性,同一生育地、 樹輪間平均敏感度(Mean Sensitivity)建議值 介於 0.2~0.3 之間,而各樹輪時間序列內部關 聯係數(Series Intercorelation)建議至少大於 0.5;本文採用 COFECHA 程式獲得平均敏感 度為 0.216;樹輪時間序列內部關聯係數為 0.522,表示採樣樹芯樣本確實能反應現地生 長環境及氣候條件,分析結果如圖 17 所示。

圖 17 利用 COFECHA 交互定年品質檢定結果

(四) 樹年輪生長干擾分析

當樹年輪交互定年完成後,即可進行生長干 擾分析以評估何時曾經生長變異年分;所謂生長 干擾,係指樹木生長階段受到外界環境刺激影響 水分供應多寡造成年輪寬窄疏密不均,又可分極 端生長變化及反應材形成,如下:

 生長抑制或釋放:根據前人相關文獻(Braker, 2002;Lopez et al., 2012),針對判斷樹木生 長抑制或釋放現象量化評估方法,可透過移動 視窗法(Spilit Moving Windows, SMW)於樹 年輪寬度時間軸上滑動,每個搜尋視窗為 n 年,n可設定為4至10年,藉由比較前n年 (含判定年分)與後n年(不含判定年分)平均年輪寬度變化百分比(MGC)以及比較當年度與前年度年輪寬度變化百分比(IGC),以評估是否呈現生長抑制或釋放事件所代表年分(如圖18),其評估公式如下:

$$MGC(\%) = \left| \frac{M_2 - M_1}{M_1} \right| \times 100\% > 50\%$$
 (2)

$$IGC(\%) = \left|\frac{W_2 - W_1}{W_1}\right| \times 100\% > 50\%$$
(3)

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 W1 M2(1956~1959)

(假定判定年分為1955年)

圖 18 年輪寬度生長變化百分率計算示圖

2. 反應材形成(Reaction Wood Formation):通 常位於陡坡生長樹木,其樹幹本身遭受上下邊 坡土壓力擠壓造成水分供應之生長干擾,在長 期作用影響下自我重力平衡達至穩定,遂形成 反應木材;Bramm et al.(1987)針對崩塌地 歷史滑動年分定年研究,發現透過於平行或正 交崩塌滑動面之取樣樹芯,因造成生長干擾形 成反應木材(含張力材及壓力材),判定干擾 事件年分;其原理為先計算兩組樹木生長軸單 年反應材年輪總寬度(其一為平行於崩塌坡面 方向之生長軸;其二正交於崩塌坡面方向之生 長軸);接著,再將樹木生長軸之壓力材(長 半徑軸)減去張力材(短半徑軸)年輪寬度 (如圖 19),據以計算單年年輪偏心率 (Eccentricity),其評估公式如下:

$$E_{CDi} = \frac{R_{Ci} - R_{Di}}{R_{Ci} + R_{Di}}$$
(4)

$$E_{ABi} = \frac{R_{Ai} - R_{Bi}}{R_{Ai} + R_{Bi}}$$
(5)

若上式分子為零時,表示無生長干擾事件發 生;反之,則需進一步進行統計檢定,以瞭解當

中興工程·第124期·2014年7月·PP. 71-84 http://www.sinotech.org.tw/journal/

年年輪寬度差異,對於樹木生長時序是否顯著 (Significant),則可透過移動視窗方法(SMW) 並進行雙尾 t 值統計檢定其生長時序顯著性,藉 以判定崩塌活動事件發生年分。

(五)崩塌歷史滑動年評估原則

當生長干擾分析完成已可掌握於樹木於崩塌 外擴面積影響範圍內受干擾事件時間變動點,亦 即對應事件年分;但仍需生長干擾樹木進行空間 套疊比較同一年樹木受生長干擾分布位置及生長 干擾數量,是否足以反應證實崩塌確實有發生滑 動;經參考相關研究(Shroder, 1978; Lopez *et al.*, 2012),歸納判定崩塌歷史滑動年評估原 則,至少需符合以下其中乙種情況條件:

第1種情況:取樣樹總數量大於或等於50株時,同年需要有10%當年存活樹木呈現出生長干擾且至少5株以上,如圖20;圖中崩塌影響範面共取樣50株樹,計有5株樹且呈現生長干擾約佔總數10%,故判定當年曾發生崩塌滑動。

圖 20 以崩塌影響範圍的呈現生長干擾數量比 判斷崩塌滑動示意圖

 第2種情況:取樣樹總數量小於50株時,若 崩崖或張力裂縫等同一地表特徵範圍內,同時 3株以上呈現出生長干擾,如圖21;圖中位於 主崩塌上方張力裂縫沿線,計有3株樹呈現生 長干擾,故判定當年曾發生崩塌滑動。

圖 21 鄰近崩塌地表特徵線呈現生長干擾數量 判斷崩塌滑動示意圖

(六)崩塌歷年活動度評估結果

依照前述各項分析程序評估鐵立庫大崩塌及 鐵立庫明隧道旁崩塌歷年滑動年分圖,如圖 22 所示;由於,本文設定移動視窗時距為4年,故 所取樣樹木樹芯之存活生長年限前後各4年,無 法比較,僅可獲得 1960 年至 2008 年前崩塌地崩 塌歷年滑動年分;由圖可知,於 1986 至 2008 年 間,鐵立庫大崩塌共發生 8 次崩塌滑動,而鐵立 庫明隧道旁崩塌共發生 2 次崩塌滑動;比較兩者 鐵立庫大崩塌發生頻度較鐵立庫明隧道旁崩塌 高,約為 4 倍。另值得注意的是,若以 1999 年 921 集集地震作為時間界點,可以發現鐵立庫大 崩塌 2000 年後發生次數大於 2000 年前,且其鐵 立庫明隧道旁崩塌始於發生滑動,推測可能於該 場地震影響及艾利颱風後颱風或豪雨接連侵襲, 易誘使崩塌發生滑動。

五、比較與探討

(一)多時期衛星影像變異點比較

為瞭解樹年輪分析崩塌歷史滑動年分可靠 度,是否與過去崩塌狀況相符;茲蒐集 1996 年 賀伯颱風前至 2009 年莫拉克颱風後衛星影像, 共計 11 期;依時間發生順序數化判釋衛星影像

颱風事件前後崩塌及新增崩塌地分布,繪製如圖 23;由圖可知,此段期間於鐵立庫大崩塌共發生 6 次颱風引致新增崩塌形成並曾發生崩塌滑動現 象;以1997年及1998年記錄曾發生崩塌滑動事 件為例,比對賀伯颱風前後衛星影像判釋,確實 能驗證符合過去發生情況,其餘崩塌滑動年分與 遙測判釋成果大致相符。另比較鐵立庫明隧道旁 崩塌之歷史崩塌滑動年分分析可靠性,發現僅有 2005 年及 2008 年記錄曾發生崩塌滑動事件與遙 測影像判釋成果相符,其餘颱風事件未有記錄崩 塌滑動年分,其吻合度偏低;係因該處崩塌下邊 坡曾發生崩塌事件,造成樹木大量死亡;於發生 崩塌後,鄰近新生樹木樹齡較為年輕且數量不 多,故可供分析樣本偏少,導致滑動定年分析結 果未能有確實反應過去崩塌狀況。有關 2004 年 至 2008 年近期崩塌滑動區塊空間分布狀況,分 述說明如下:

- 2004 年:2004 年艾利颱風後引致位於鐵立庫 大崩塌坡腹及下方右翼之新增崩塌地,距上方 100 公尺範圍內皆有造成樹種生長干擾現象, 生長樹種以台灣赤陽居多,坡面朝西北方,坡 度陡峭約為 38 度,其生長地處均呈崩塌徵兆 (含有張力裂縫、沖蝕溝),顯示當年影響該 處區域滑動,如圖 24 (a)所示。
- 2. 2005 年:2005 年馬莎颱風後引致位於鐵立庫 明隧道旁崩塌外擴面積左翼之新增崩塌地,距 上方100公尺範圍內皆有造成樹種生長干擾現 象,生長樹種以香杉居多,坡面朝西北方,坡

度約為 32 度,其生長地處位於有張力裂縫及 崩崖旁,如圖 24 (b) 所示。

- 3. 2006年:2006年珊珊颱風後引致位於鐵立庫 大崩塌外擴面積中央及上方區域之新增崩塌 地,相較於2004年,沿著沖蝕溝發展並似有 崩退運動(Retrogressive Failure)並往山稜線 延伸,其發生規模相較以往為鉅,而其鄰近範 圍90公尺範圍內皆有造成樹種生長干擾現 象,生長樹種以台灣赤陽及柳杉居多,坡面朝 西北方,坡度介於30度至40度,其生長地處 均呈崩塌徵兆(含有張力裂縫、沖蝕溝、崩 崖),尤以接近於新增崩塌地上方右側呈連帶 滑動跡象,如圖24(c)所示。
- 4. 2007年:2007年柯羅莎颱風後,類似前年2006年珊珊颱風,此時造成新增崩塌地又更近接於山稜線,其整個右側造成明顯生長干擾現象,分布範圍較大,生長樹種含台灣赤陽、柳杉以及香杉,面朝西北方,坡度坡度介於30度至40度,其生長地處張力裂縫、沖蝕溝、崩崖附近;若比較2004年、2006年分析結果,顯示仍呈持續滑動跡象,如圖24(d)所示。
- 2008 年:2008 年辛樂克颱風後引致鐵立庫明 隧道旁崩塌左翼之新增崩塌地造成樹種生長干 擾現象,相較 2005 年,其位置大致接近,生 長樹種含香杉、章樹以及楓香,坡度陡峭約為 40 度,其生長地處有張力裂縫及崩崖附近, 自 2005 年後呈現滑動跡象,如圖 24 (e)所示。

圖 23 1985 年至 2009 年衛星影像判釋鐵立庫大崩塌及鐵立庫明隧道旁崩塌時空演變圖

×

圖 24 近期 2004 年 2008 年鐵立庫大崩塌及鐵立庫明隧道旁崩塌滑動分布圖

(二)崩塌歷史滑動年分與強降雨事件關連性探討

考量石門水庫集水區歷年崩塌地發生因素, 大多因颱風或豪雨事件所造成,實為該區域崩塌 外在主要驅動因子,尤以高強度且延時長特性之 強降雨事件,最易造成崩塌發生(Yu et al., 2006)。遂此,蒐集鐵立庫地區鄰近為三光及巴 陵等兩雨量站,記錄 1960 年至 2011 年降雨量資 訊,共計 52 年;藉以崩塌滑動年分與歷年強降 雨事件關連性探討,其分成流程如下:

1. 降雨事件雨場切割

本文係採用水保局(2005)雨場切割方式, 其以一場連續降雨過程中,時雨量大於 4mm/hr 視為有效降雨時間之起點,而已連續 6 小時時雨 量均小於 4mm/hr 之起點視為有效降雨結束;有 效降雨起訖期間定義為「有效連續降雨」;根據 上述 52 年雨量站資料進行雨場切割,共分成 2,246 件雨場,如圖 25 所示;

2. 強降雨事件篩選

參考中央氣象局及相關北台灣地區降雨誘發 崩塌滑動之水文條件(Yu et al., 2006),定義強 降雨事件之最大降雨強度必須大於 30mm/hr;且 24 小時最大累積降雨量大於 350mm;將前項雨 場切割所得成果 2,246 場,依此類降雨特性進行 篩選,共計獲得 22 場;尤以 200 年強降雨事件 為鉅(亦即艾利颱風,其當時最大降雨強度達 71.5mm/hr,累積雨量達 1,213.5mm,24 小時累 積雨量達 908.5mm);又以 2005 年歷經 3 場強 降雨事件屬歷年最為頻繁。有關歷年強降雨事 件,其「累積雨量」、「24 小時最大累積雨量」 及「最大降雨強度」,整理如表1所示。

項次	事件時間	累積雨量 (mm)	最大 24 小 時累積雨量 (mm)	最大降雨 強度 (mm/hr)	強降雨事件 (颱風名 稱)	備註
1	1961/09/12	472	472	69.8	波密拉	-
2	1963/09/12	1414.3	989	62	葛樂禮	-
3	1969/09/27	482	482	61.6	艾爾西	-
4	1971/09/23	478.9	379	50	貝絲	I
5	1972/08/17	691	603.9	48.6	貝蒂	-
6	1976/08/10	521.4	521.4	88.2	畢莉	1
7	1984/06/04	364.8	364.4	83.2		-
8	1990/08/20	484	424	68	楊希	-
9	1990/08/31	472	417	41	亞伯	I
10	1996/08/01	673	569	58	賀伯	-
11	1997/08/18	560	499.5	31.5	溫妮	•
12	1998/10/17	531.5	446.5	44	瑞伯	•
13	2000/11/01	355.5	353.5	32.5	象神	•
14	2001/09/17	493.5	405.5	36	納莉	•
15	2001/09/19	460.5	362	37.5	納莉	•
16	2002/07/04	462	443	60	雷馬遜	1
17	2004/08/25	1213.5	908.5	71.5	艾利	٠
18	2005/07/18	492.5	477	38	海棠	
19	2005/08/06	927	777	60	馬莎	
20	2005/09/01	417	416	48.5	泰利	
21	2007/10/07	660	563	52.5	柯羅莎	•
22	2008/09/15	862	396.5	38	辛樂克	
註 1:●為鐵立庫大崩塌滑動定年 註 2:▲為鐵立庫明隧道旁崩塌滑動定年						

表 1 1960 至 2008 年 強降雨事件特性表

I

3. 歷經崩塌滑動年分之強降雨事件關連性

前述 22 場強降雨事件與本次歷史滑動年分間 相互比較,發現共有 11 場歷經崩塌滑動年分之 強降雨事件(如圖 25),其中屬為鐵立庫大崩塌 之強降雨事件,7場;餘4場屬於鐵立庫明隧道 旁崩塌,相關資訊參見表1;茲就11場強降雨事 件特性而言,其最大降雨強度介於31.5mm/hr至 71.5 mm/hr之間;累積降雨介於355.5mm至 1213.5mm之間;最大24小時累積雨量介於 353.5mm至908.5mm之間,推斷為誘發崩塌滑動 之基本水文條件。

六、結 論

本文透過樹年輪地形學進行科學化及具系統 性崩塌活動度分析,再以遙測影像判釋驗證成果 之正確性,除可掌握近期崩塌滑動區塊及樹木生 長干擾空間位置,並能評估歷史崩塌滑動年分; 經分析顯示,於 1986 至 2008 年間,鐵立庫大崩 場共發生 8 次崩塌滑動,而鐵立庫明隧道旁崩塌 共發生 2 次崩塌滑動;比較兩者鐵立庫大崩塌發 生頻度較鐵立庫明隧道旁崩塌高,約為 4 倍,故 建議後續應注意鐵立庫大崩塌右翼區域及鐵立庫 明隧道旁崩塌左翼,其近期滑動甚為明顯,屬為 未來亟需整治及工程應投入重點;避免於防汛期 間或遭逢颱風豪雨造成土砂災害發生及減少土砂 產量進入河道,造成河道淤積及道路中斷等相關 災情。此外,受限於崩塌滑動年分之時間精度影 響,探討與歷年強降雨事件關連性,僅可初步歸 納歷經強降雨事件水文特性,詳細誘發崩塌降雨 與地文確切條件及互制關係,仍待後續實際案例 及現場調查結果,得以有效說明及釐清。

謝 誌

感謝行政院農業委員會水土保持局,提供計畫(編號 SWCB 101-088)經費補助,作者謹申謝忱。

參考文獻

- 于國安(1972)年輪資料學的簡介及應用於逕流估計的 方法,水土保持學報,第5卷,第1期,第18-24頁
- Alestalo, J. (1971) Dendrochronological Interpretation of Geomorphic Processes, Fennia 105, pp. 1-139
- Schroder, J. F. (1978) Dendrogeomorphological Analysis of Mass movement on Table Cliffs Plateau, Utah, Quaternary Research 9, pp. 168-185
- Braam R. R., Weiss E. E. J, and Burrough P. A. (1987) Spatial and Temporal Analysis of Mass Movement Using Dendrochronology, Catena, Vol. 14, pp. 573-584
- Stoffel, M., Bollschweiler, M., Butler, D., and Luckman, B. (2010) Tree Rings and Natural Hazards, Springer, New York
- Lopez, S. J, Corona C, Stoffel, M, Astrade L, Berger, F., and Malet J. P. (2012) Dendrogeomorphic Reconstruction of Past Landslide Reactivation with Seasonal Precision: the Bois Noir landslide, Southeast French Alps, Landslides, Vol. 9, No. 2, pp. 189-203
- Chiba, T., Kaneta S.-I., and Suzuki, Y. (2008) Red Relief Image Map1: New Visualization Method for Three Dimensional Data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part B2, Beijing, pp. 1071-1076
- 陳信雄(1995)崩塌地調查與分析,渤海堂,第620頁
- 周恒(1967)水土保持學,臺灣省立農學院出版委員會
- 王松永、丁昭義(1979)林產學,臺灣商務印書館,第 647-655頁
- 藤原明敏(1970)地すべり調査と解析,理工圖書株式 會社,第320頁
- 南哲行(2010)深層崩塌及行政的措施,2010年國際坡 地災害技術交流會議,臺灣,台中
- 日本土木研究所(2009)深層崩壊の発生の恐れのある 渓流抽出マニュアル(案)に関するよくある質問と 答え,日本
- 經濟部中央地質調查所(2010)莫拉克颱風受災區域之 地質敏感特性分析(1/3)
- 劉哲欣、林聖琪、吳亭燁、陳聯光(2011)大規模崩塌 災害調查方法探討,地工技術,第 129 期,第 45-56 頁
- 羅佳明、林銘郎、董家鈞、張光宗、簡士堯、黃安斌 (2009)應用地形分析、遙測影像判釋與 PIV 技術於

紅菜坪地滑特徵及其分區之研究,中國土木水利工程 學刊,第21卷,第2期,第395-410頁

- Lo, Chia-Ming, Lin, Ming-Lang, Tang, Chao-Lung, and Hu, Jyr-Ching (2011) A Kinematic Model of the Hsiaolin Landslide Calibrated to the Morphology of the Landslide Deposit, Engineering Geology, Vol. 123, pp. 22-39
- 魏倫瑋、羅佳明、鄭添耀、鄭錦桐、冀樹勇(2012)深 層崩塌之地貌特徵-以臺灣南部地區為例,中興工程, 第 115 期,第 35-43 頁
- Soeters, R. and Van Westen, C. J. (1996) Slope Instability Recognition, Analysis, and Zonation, Landslides: Investigation and Mitigation, Transportation Research Board, Special Report 247, National Research Council, National Academy Press, Washington D.C., pp. 129–177
- Paolini, L. and Villalba, R. (2010) Rainfall Up, Mountain Down?, Tree Rings and Natural Hazards, Springer, London, New York, pp. 121-125
- Carrara, P. E. and O'Neil, J. M. (2002) Tree-Ring Dated Landslide Movements and Their Relationship to Seismic Events in Southwestern Montana, Quaternary Research, Vol. 59, pp. 25-35
- Cook E. R., and Kairiukstis L. A. (1990) Methods of Dendrochronology: Applications in the Environmental Sciences, Kluwer Academic Publishers, Dordrecht, The Netherlands
- 柯傑夫(2010)鐵立庫崩塌地,北臺灣:以試驗判斷岩 盤湧水扮演的角色,臺灣大學,碩士論文
- 詹明勳(1999)塔塔加地區天然生台灣雲杉樹輪氣候學 之研究,臺灣大學,博士論文
- Stokes, M.A., and Smiley, T. L. (1968) Introduction to Tree Ring Dating, University of Arizona Press
- Holmes R. L. (1983) Computer-Assisted Quality Control in Tree-Ring Dating and Measurement, Tree-Ring Bulleting, pp. 43
- Braker, O. (2002) Measuring and Data Processing in Tree-Ring Research - A Methodological Introduction, Dendrochronologia, Vol. 20, pp. 203-216
- 行政院農業委員會水土保持局(2005)土石流災害現地 調查之規劃訂定
- Yu, F. C., Chen, T. C., Lin, M. L., Chen C.Y., and Yu, W. H. (2006) Landslides and Rainfall Characteristics Analysis in Taipei City During the Typhoon Nari Event, Natural Hazards, Vol. 37, pp. 153-167

■財團法人中興工程 顔間社 SINOTECH ENGINEERING CONSULTANTS,INC.