應用非常規攝影量測於地形 高程變化量推估

-以國道3號大埔順向坡崩塌事件爲例

蕭震洋* 謝寶珊* 冀樹勇**

摘要

本研究採用非常規攝影「量測」(Unconventional Photogrammetry)進行攝影測量學上新技 術之應用與初步探討。非常規攝影量測與常規傳統攝影「測量」(Traditional Photogrammetry)最 顯著之不同即非常規可使用消費型數位相機且無需事前標定(Camera Calibration),雖然內外參 數(Internal & External Parameters)的計算較複雜且精度較低,但一旦發生災害,便能以易於取 得的現場照片重建三維地形,若比較災前地形資料,即可進行災害前後地形高程差異變化之量化。 文中以民國 99 年 4 月 25 日下午 2 時 33 分於國道 3 號南下線里程約 3.1K 處之大埔順向坡崩塌事 件為例,非常規攝影量測成果與高精度 GPS 現地測量成果之高程誤差皆低於 16 公分,且推估崩塌 土方量與交通部(2010^a)公告數據僅差 2.5%,充分顯示以非常規攝影量測評估地形高程變化

關鍵字:非常規攝影量測、電腦視覺、SIFT、SfM、土方量

一、前言

近年來天然災害頻繁,國際間學者及專家遂開 始研究可應用於緊急救災時之測量方式及流程(柯 濤等人,2010)。這種方式通稱「非常規」攝影量 測,其不同於「常規」傳統攝影測量,精度要求較 低且約束條件較少,特色為能應用各式易於取得之 影像資料(如災後無規劃飛行路徑的航拍、UAV (無人飛行載具)攝像及現地居民或媒體所提供之 即時災害現場照片),且資料處理採半自動方式, 便於災後完成初步調查工作,提供量化參考數據, 以利於即時災情掌控進而及時救災。隨著數位相機 日益普及,居民或救災人員常在發生災害後,即時 拍攝多幅災害現況照片,但此類照片拍攝位置屬隨 機且未標定,較不適用傳統常規攝影測量。本文應 用 Scale-Invariant Feature Transform (SIFT)、 Structure from Motion (SfM)及多視幾何等非常規 攝影量測方法,可從上述多幅不同角度且未標定的 序列影像進行圖像資訊綜合分析,進行災後影像深 度量測與災區三維地形重建(3D-Reconstruction)。

^{*} 中興工程顧問社防災科技研究中心助理研究員

^{**} 中興工程顧問社大地工程研究中心、防災科技研究中心經理

本文以民國 99 年 4 月 25 日發生於國道 3 號 3.1K 之大規模邊坡崩塌事件為例,使用消費型數位 相機(Panasonic DMC-LX3)以不同方向角度拍攝 土石清運前與清運後之影像,再以非常規攝影量測 技術獲取影像中的三維點雲資料;經人工編修後, 以高精度 GPS 測量值為地真(Ground True)資料檢 核其點雲資料誤差,確認其適用範圍;再以三維空 間科學繪圖軟體 Surfer 比較土方清運前後數值地形, 估算本案例區域於該崩塌事件中所清運之土方量。

二、非常規攝影量測簡介

目前數位攝影機與數位相機在解析度與取樣頻 率等規格大幅提升,且各種量測理論日趨成熟,故 數位攝影量測技術已逐漸被應用在各種物理量的量 測與識別、地形測繪及災後即時資料處理上。陳建 州等人(2010)使用消費型數位攝影機成功取代精 密速度計,用以識別斜張鋼纜的各項振態參數;孫 敏(2007)及趙曉等人(2004)也曾使用消費型數 位相機,透過電腦視覺領域之多視幾何技術獲取工 程測繪等級精度之地形三維重建成果;大陸武漢大 學研究團隊於 2010 年台灣成功大學舉行兩岸非常 規攝影測量研討會時,分享於2008年5月12日汶 川大地震中,以不同於常規攝影測量方式進行資料 取得、處理及成果展示等一套完整流程之經驗分享 (柯濤等人,2010;張勇等人,2010;孫明傳及段 艷,2010)。基於上述,國際間學者及專家將本文 所應用 SIFT、SfM 及多視幾何等不符合常規傳統攝 影測量規範之測量方式及流程,皆歸類為非常規攝 影量測。

雖攝影測量學為一門成熟的傳統科學,目前除 已發展至數位化,結合遙測(Remote Sensing)領 域之應用也已普及,但當災害發生,緊急救災時所 能進行的測量方式及流程並無法滿足其傳統測量之 嚴格操作規範,歸納四大因素如下:

 拍攝地點複雜:常呈現隨機交向攝影方式(如圖
1),不易按照傳統平行攝影方式(如圖 2), 致使影像重疊率變化較大。

- 目期图法人中興工程原間社 SINOTECH ENGINEERING CONSULTANTS,INC.
- 基線(Baseline)不同:隨機拍攝造成各張照片 間基線長短不一。基線太短將影響測量精度,而 基線過長不易進行影像匹配。
- 精度及可靠性浮動:因各張照片之拍攝焦距、基 線與畸變為隨機,以致影響量測之精度及可靠 性。
- 影像匹配不易:隨機拍攝造成任意照片組合之上 下或左右視差角度過大,照片解析度也因拍攝焦 距等原因而有所差異,難以應用常規攝影測量的 匹配方法進行處理。

基於上述限制,非常規攝影量測方法便逐漸被 各專家學者所發展應用,而本研究所採用的 SIFT、 SfM 及多視幾何等方法,其原理即以校正或非校正 的相機拍攝多張序列照片,進而計算相機拍攝時的 運動參數以及建立 3D 場景幾何資訊 (賴文能與 陳韋志,2010),為近年來電腦視覺(Computer Vision)領域熱門之三維重建方法 (Pollefeys et al., 1996; Triggs, 1997; Kraus, 1997; 孟曉橋等人, 2003; 趙曉等人, 2004; Habed and Boufama, 2004; 王亮芬, 2010); SfM 係採用自標定技術 (Self-Calibration) 獲取每張照片拍攝時的相機相對位置(Maybank and Faugeras, 1992 ; Faugeras, 1992 ; Pollefeys, 1999; Lei et al., 2001; 雷成等人, 2001; 張艷珍等人, 2001),進而求得相機個別運動的旋轉及平移參 數;據此兩參數及通過原點之旋轉軸,可將所有照 片調校至同一基礎下;換言之,即應用多視圖幾何 原理(Multiple View Geometry)進行三維重建 (Gordon and Lowe, 2004; 孫敏, 2007)。

■財團法人中興工程願問社 SINOTECH ENGINEERING CONSULTANTS,INC.

三、非常規攝影量測流程

本段主要介紹估算崩塌土方量之方法,首先概 述國道3號3.1公里之大埔順向坡崩塌事件,其次說 明地形三維重建步驟,接著進行重建資料之精度檢 核,最後計算兩期重建地形之高程差量。依序說明 如后。

(一) 國道 3號 3.1 公里大埔順向坡崩塌事件概述

民國 99 年 4 月 25 日下午 2 時 33 分於國道 3 號基隆汐止段南向里程約 3.1K 處右側上邊坡發生 大規模崩塌事件(交通部,2010^b)。根據陳勉銘等 人(2010)研判本次事件為石底層底部砂岩段楔形 塊體下滑造成,屬於順向坡岩體滑動的山坡類型 (如圖 3)。災害發生當時天氣晴朗且無風無雨, 大量崩塌土石除壓垮國道 3 號主線上方的大埔橋 外,也掩埋南北雙向共 6 車道(如圖 4),使得汐 止系統一基金雙向車道於救災搶修期間全面封閉, 預估通車時間從原民國 99 年 5 月 25 日,延後至民國 99 年 6 月 1 日有條件性通車;最後,民國 99 年 6 月 19 日恢復全線雙向 6 車道通車且取消通車限制條件。

由於崩塌土方量不易於災後立即估算,且後續 相關安全評估複雜繁瑣,易延誤通車時間。有鑒於 此,若能在災害發生後,即時量測評估崩塌土方 量,對於清運計畫經費及時程安排皆有所助益;另 災害發生區域廣泛,常呈現零星分布,且交通動線 易受災害阻斷,致使人力到達困難度提高,加上能 快速測量之儀器(如光達)與專業操作人員較少, 不易即時進行所有受災區域地形測量,以致無時效 性量化資訊,供以評估後續土方清運處理對策。

中興工程·第114期·2012年1月·PP. 35-44

(摘自 陳勉銘等人,2010)

圖 3 事件地點災前航照及地質剖面示意圖

(摘自 交通部,2010^b) 圖 4 崩塌現場空拍照片

(二)三維重建步驟

圖5為三維重建步驟流程圖。首先,對目標物 進行多角度拍攝,其次,再以SIFT進行特徵點提取 及影像匹配;接著重複以SfM獲得相機參數,進而 應用多視幾何方式獲取三維點雲資料,最後,藉由 參考點將三維點雲資料由相對區域坐標轉換世界坐 標(國際通用世界坐標為WGS84,但各國家地區常 有個別定義坐標系統(如台灣為TWD97)。各步驟 詳述如下:

圖 5 三維重建處理步驟流程圖

- 目標物多視角拍攝:立體視覺之三維重建如同左 右眼視差所造成立體感,故應以不同角度拍攝目 標物兩張以上的照片才能進行三維重建。拍攝目 標物馬距越長,在同距離及角度拍攝的照片張數 就越多(如圖 6),但解析度也就越高,有助於 提高三維重建點雲資料密度及精度,但重建電腦 運算時間也就越長。三維重建點雲資料最後需使 用參考控制點進行坐標轉換,故參考控制點要能 在重建三維點雲中被人眼辨識,此與每次拍攝照 片解析度及參考控制點之標示尺寸有關,經作者 測試,建議參考控制點應至少涵蓋 7x7 個像素較 容易獲得人眼可辨識參考控制點之點雲資訊。
- 2. 影像匹配:影像匹配應先偵測特徵,後進行特徵 匹配。特徵必須是穩健性(Robust)且可被描述 的,所謂穩健性是表示該特徵能對於旋轉、尺 度、視角及亮度等影像變化因素保持不變性,而 將特徵點進行統計且透過轉換或組合,則可使其 成為易辨識及匹配的描述形式,如此即可穩定匹

配兩幅差異較大的影像。因此,本文使用 SIFT 演算法(Lowe, 1999、2004、2006),主要包括 「產生特徵向量」及「匹配特徵向量」等兩個步 驟(胡小鋒及趙輝,2004),其可獲得尺度及旋 轉不變性的特徵點及其描述算子(Description Operator),進而達成良好的影像匹配成果。

(a) 焦距短(36mm)

(b) 焦距長(70mm) (焦距短相對長之可視範圍較大,但解析度較低) 圖6同地點不同焦距拍攝成果示意圖

3. 相機位置及參數獲取:以特徵點匹配數最多的兩張圖片作為起始位置,並以光束調整法程式庫 (Sparse Bundle Adjustment Library) (Lourakis and Argyros, 2004) 有效減少每次循環計算的目 標函數,故可依序加入具備足夠特徵點匹配成果 之鄰近圖片,重複進行 SfM 循環計算目標物場 景中每張圖片的相機位置及其參數,直至無可進 行三維重建的照片為止(Noah et al., 2010)。

財團法人中興工程 顔間社 SINOTECH ENGINEERING CONSULTANTS,INC.

- 4. 三維重建:三維重建即為計算三維點雲資料。本 文使用 Multi-View Stereopsis(MVS)(Yasutaka and Jean, 2010)對已有相機參數之標定影像,進 行三維點雲資料計算:MVS 特色為準確、效率 高且計算三維點雲資料密集並帶有原照片中之 RGB 色碼。
- 5. 坐標轉換:透過參考控制點將目標物三維點 雲資料由相對區域坐標轉換世界坐標(各地 區有所差異,台灣地區目前使用 TWD97 坐標 及 TWVD2001 高程基準)。使用非測量相機進 行三維重建時,控制參考點的分布需要滿足解算 條件,且盡量確保能控制整個測區,但過多的參 考控制點並未對提升精度有所幫助,建議提供 6 個以上參考控制點進行坐標轉換(汪磊,2002)。

(三)量測誤差比對

使用照片做為量測資料基礎,其誤差主要來源 來自照相機及三維重建演算法。Seitz et al. (2006) 指出目前多數三維重建演算法在 30 萬畫素(640* 480)照片中 20 公分寬的物件精度可達 0.1 公分; 近年許多使用非測量相機的攝影測量精度已可滿足 1:100 至 1:200 比例尺的地形圖測繪(汪磊, 2002)。量測資料精度對於地形差量估算甚為重 要,若掌握其製作地形資料精度,方能釐清是否為 真實差異量,或是量測誤差範圍。蕭震洋等人 (2009)曾以精度達 50 公分之空載光達為實例說 明,欲觀測地形高程前後期差異相減高程量若小於 50 公分,不建議直接採用於推估分析上。鑑此,本 文案例使用德國儀器大廠 Leica 所製造高精度 GPS (如圖 7)測量成果與三維重建點雲資料進行測量 誤差比較。

(四)崩塌土方量估算

三維點雲資料多包括植被與其他物體(如挖土 機及電線桿等),故應先進行點雲移除或降低高度 等人為編修,再使用三維空間科學繪圖軟體 Surfer

中興工程·第114期·2012年1月·PP. 35-44 http://www.sinotech.org.tw/journal/

比較土方清運前後數值地形,估算崩塌土方量。圖 8 為前後期地形變化之體積計算模擬示意圖。經後 期高精度數值地形減去前期高精度數值地形,所得 網格內數值若為負值代表土方移出、正值為土方移 入,再乘上高精度數值地形網格面積大小,即為單 一網格之地形變化量,故崩塌清運土方量為地形變 化量之體積總和。

四、實例探討

本段以國道3號3.1公里大埔順向坡崩塌事件之 清運土方量估算做為實例進行探討。依序說明三維 重建、量測誤差比對及崩塌土方量估算成果如后。

(一) 三維重建成果

國道3號3.1公里崩塌事件發生後,首先,筆者

分別於民國99年4月25日下午3時(拍攝9張)及民 國99年9月16日下午1時(拍攝52張),前往位在事 件發生地點對面之自強產業道路上空地(如圖9) 進行受災地點照片拍攝(如圖10);接著,將拍攝 照片經影像匹配及SfM運算後,得到清運前及清運 後分別有5張及26張照片可供進行三維重建,並個 別產生965,021個及1,590,206個三維點雲資料;最 後,以7個特徵點之高精度GPS測量坐標值,做為真 實世界坐標轉換及後續誤差比對之參考控制點(如 表1)。圖11為三維重建點雲資料成果圖,其中 (a)及(b)為可明顯分別看出植被、電線桿及挖 土機等具有三維坐標及RGB色碼之點雲資料,有助 於後續人為編修。

表 1 高精度 GPS 坐標測量成果

編號	TWD97_X	TWD97_Y	橢球高 (M)	用途
1	320,092.16	2,779,282.87	111.25	
2	320,024.04	2,779,289.75	128.08	
3	319,998.46	2,779,288.23	134.63	
4	319,978.13	2,779,292.41	140.52	坐標轉換
5	319,958.26	2,779,299.91	146.63	
6	319,949.26	2,779,291.17	146.40	
7	319,962.33	2,779,276.91	142.65	
8	320,064.65	2,779,253.63	114.62	
9	320,063.61	2,779,252.56	114.89	追 主 下 新
10	320,027.11	2,779,266.49	125.31	嵌左比到
11	320,026.10	2,779,265.24	125.47	

(修改自 交通部,2010^b) **圖 9 拍攝地點**

財團法人中興工程顏問社 SINOTECH ENGINEERING CONSULTANTS, INC.

(a) 民國 99 年 4 月 25 日

(b)民國 99 年 9 月 16 日 圖 10 事件地點清運前後照片

(a) 民國 99 年 4 月 25 日

(b)民國99年9月16日 圖 11 三維重建點雲成果圖

I

40

(二)量測誤差比對成果

比較三維重建特徵點坐標與高精度 GPS 現地 測量成果,其高程誤差從 11 公分到 16 公分(如 表 2),滿足營建署城鄉發展分署所訂定地形測量 驗收標準(吳宗江等人,2007)。經評析後,若欲 提升精度,可藉不同演算法交互比對或強化攝影設 備規格提升照片解析度,再透過室內標準模型對 照,將可減低估算誤差。

(三)崩塌土方量評估成果

完成人工編修之點雲資料,使用 Surfer 建立土 方清運前後之 5m×5m 數值高程模型(DEM);清 運前(如圖 12)可見坡面上有明顯崩塌土方殘留, 但清運後坡面光滑無殘土,如圖 13。圖 14 為崩塌 土方清運前後地形高程變化量分布圖,推估崩塌清 運之土方量約為 225,078.5m³,此估算數據與交通部 (2010^a)依據民國 99 年 4 月 25 日至 5 月 4 日砂石 車實際外運統計公告 219,527m³ 土方量之結果相 近,約差 2.5%。

CDC	TWD97_X	320,064.65	320,063.61	320,027.11	320,026.10	
GPS 測量	TWD97_Y	2,779,253.63	2,779,252.56	2,779,266.49	2,779,265.24	
三維重建	橢球高(m)	114.62	114.89	125.31	125.47	
	TWD97_X	320,064.26	320,063.80	320,026.35	320,026.19	
	TWD97_Y	2,779,250.99	2,779,250.83	2,77,9267.72	2,779,267.73	
成果	橢球高(m)	114.78	114.76	125.42	125.31	
高程差絕對值(m)*		0.16	0.13	0.11	0.16	

表 2 誤差比對成果

*局栏差絕對值= |GPS 測量橢球局 - 二維重建成果橢均

(資料來源:土方清運前拍攝照片三維重建成果) 圖12 清運前地形暈渲圖 E319940

(資料來源:土方清運後拍攝照片三維重建成果) 圖 13 清運後地形量 13

圖 14 土方清運前後地形高程變化量分布圖

五、結論與建議

本文所提之非常規攝影量測方法乃使用自標 定,不需要專業測量用相機,且操作簡單、約束 條件少,並適用歷史照片或災害發生後任何人所 拍攝的照片,可增加使用彈性。由案例分析可知 量測誤差量足以評估本次事件之崩塌土砂產量, 與最後清運結果相近,顯示此項技術確屬可行。 建議未來除地面拍攝外,尚可搭配 UAV 突破地 面上之拍攝角度限制。雖然自標定結果不夠穩 定,精度有時較差,相機標定甚至可能因錯誤率 高而導致三維重建失敗,但可藉由蒐集或拍攝較 多目標物照片補足缺陷,提升三維重建成功性; T

程

若拍攝前能先進行相機標定,且拍攝環境較不複 雜,建議可嘗試以 Tsai 兩步標定法(Tsai, 1986)、Weng 標定法(Weng *et al.*, 1992)、 Zhang 棋盤法(Zhang, 1999、2000)、Bouguet (1999)之基於對偶原理的標定法、Heikkilä (2000)之圓形標誌做為控制點標定法以及 Ahn *et al.*(2001)之圓環編碼圖標自標定法等其他精 度較高相機標定方式來代替本文提出之自標定, 減少相機標定錯誤率。

六、後續應用

非常規攝影量測能有效、經濟、迅速進行地 形量測,建議後續可嘗試應用如下:

- 辨識天然災害於地表受災範圍及規模:可建立 崩塌、堆積等災情初步評估量化資料,以即時 且有效反應地形變動概況,作為災害應變決策 參考,將致災風險減至最低。
- 地質調查:對於調查人員無法接近的地點(如 峽谷對岸),可依據本方法調查地層之走向與 傾角。
- 土壤沖蝕調查:一般使用沖蝕針進行土壤沖蝕 調查,其資料為點狀,但若搭配本方法即可建 立調查區域完整土壤沖蝕面狀資料。
- 量化土石流與崩塌歷程變化:長期監控相同土 石流或崩塌區域,即可重建其歷程變化。
- 5. 驗證三維邊坡數值模擬:三維邊坡數值模擬為 當前相當熱門之議題,尤以岩坡上弱面之發展 與災前後地形的快速量測,對於山崩機制推 估、模型邊界設定與模擬參數之修正極為重 要。有鑑於國內目前岩坡三維數值模擬多以落 石型山崩為主(顧承字等人,1996、2006;葛 德治與陳詳凱,2006;羅佳明,2010),其參 數上往往缺乏完整岩坡之弱面發展與災前後之 數值高程模型,而本研究將可快速提供相關數 值模擬資訊(包含張裂縫、節理、劈理、片理

等弱面分布),大幅提升模型邊界與輸入參數 之正確性,並可提供相關山崩領域專家快速研 判山崩機制之重要依據。

誌 謝

本研究進行期間特別感謝清雲科技大學 e-GPS 研究中心吳建廷講師與維興科技有限公司洪 于正專員所提供之相關協助與建議。

參考文獻

- Yasutaka Furukawa, Jean Ponce (2010) Accurate, Dense, and Robust Multiview Stereopsis, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 8, pp. 1362-1376
- Habed A., Boufama B. (2004) Camera Self-Calibration: A New Approach for Solving the Modulus Constraint, ICPR (4), pp. 116-119
- Triggs, B. (1997) Auto-calibration and the Absolute Quadric, Proceedings of Computer Vision and Pattern Recognition, pp. 609-614
- Lowe David G. (1999) Object Recognition from Local Scale-Invariant Features. International Conference on Computer Vision, Corfu, Greece, pp. 1150-1157
- Lowe David G. (2004) Distinctive Image Features from Scale-Invariant Key Points, International Journal of Computer Vision, No.60, pp. 91-110
- Lowe David G. (2006) Automatic Panoramic Image Stitching using Invariant Features, International Journal of Computer Vision, No.74 (1), pp.59–73
- Heikkilä, J. (2000) Geometric Camera Calibration Using Circular Control Points, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 10, pp. 1066-1077
- Gordon I., and Lowe David. G. (2004) Scene Modeling, Recognition and Tracking with Invariant Image Features, Proceedings of International Symposium on Mixed and Augmented Reality, ISMAR, pp. 110-119
- Weng J., Cohen P., and Herniou M. (1992) Camera Calibration with Distortion Models and Accuracy Evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), No.14 (10), pp. 965-980
- Bouguet Jean-Yves (1999) Camera Calibration from Points and Lines in Dual-Space Geometry, 1999 Technical Note, http://www.vision.caltech.edu/bouguetj/

■財團法人中興工程 顔間社 SINOTECH ENGINEERING CONSULTANTS,INC.

- Kraus Karl (1997) Photogrammetry, Volumes I and II, Dümmler
- Lei C, Wu F C, Hu Z Y. (2001) Kruppa Equations and Camera Self-calibration. Acta Automatica Sinica, No. 27 (5), pp.621-630
- Pollefeys Marc, Gool Luc Van and Oosterlinck AndrÂe (1996) The Modulus Constraint: A New Constraint for Self-calibration, Proceedings of International Conference of Pattern Recognition, pp.349-353
- Pollefeys Marc (1999) Self-calibration and Metric 3D Reconstruction from Uncalibrated Image Sequences, Ph. D Thesis, Katholieke Universiteit Leuven
- Noah Snavely, Ian Simon, Michael Goesele, Richard Szeliski, and Steven M. Seitz (2010) Scene Reconstruction and Visualization from Community Photo Collections, Proceedings of the IEEE, pp.1370-1390
- Faugeras O. (1992) What Can Be Seen in the Three Dimensions with an Uncalibrated Stereo Rig?, Proceedings of the 2th European Conference on Computer Vision, pp.563-578
- Seitz S. M., Curless B., Diebel J., Scharstein D., and Szeliski R. (2006) A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, Proceedings of the IEEE, Vol.98,No.8
- Tsai R. Y. (1986) An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.364-374
- Ahn S. J., Rauh W., and Kim S. I. (2001) Circular Coded Target for Automation of Optical and 3D-measurement Camera Calibration. International Journal of Pattern Recognition and Artificial Intelligence, Vol.15, pp.905-919
- Maybank S., Faugeras O. (1992) A Theory of Selfcalibration of a Moving Camera, International Journal of Computer Vision, No. 8 (2), pp.123-151
- Zhang Z. (2000) A Flexible New Technique for Camera Calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, No. 22 (11), pp.1330-1334
- Zhang Z. (1999) Flexible Camera Calibration By Viewing a Plane from Unknown Orientations, International Conference on Computer Vision, pp. 666-673
- Lourakis M., Argyros A., The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt algorithm, Tech. Rep. 340, Institute of Computer Science--FORTH, Heraklion, Crete, Greece, 2004. Available with Source Code from: (http://www.ics.forth.gr/~lourakis/sba)

中興工程·第114期·2012年1月·PP. 35-44 http://www.sinotech.org.tw/journal/

- 王亮芬(2010)基於 SIFT 特徵匹配和動態更新背景模型 的運動目標檢測演算法,電腦應用與軟體,第27卷, 第2期,第267-270頁
- 交通部(2010^a) 國道 3 號 3K+100 邊坡坍方事件-邊坡初 步檢測評估報告
- 交通部(2010^b)高速公路風險管理 國道 3 號 3.1 公里 崩塌事件案例簡報檔案
- 吳宗江、馮正一、陳文福(2007),崩塌地地形量測精 度對土方估算影響之研究,水土保持學報,第39卷, 第1期,第63-72頁
- 汪磊(2002)數字近景攝影測量技術的理論研究與實 踐,碩士論文,中國人民解放軍信息工程大學,河南 省鄭州市
- 孟曉橋、胡占義(2003)攝像機自標定方法的研究與進展,自動化學報,第29卷,第1期,第110-124頁
- 柯濤、張祖勛、郭大海、王建超(2010)應急響應下的 航空攝影測量,2010兩岸非常規攝影測量研討會,台 南
- 胡小鋒、趙輝(2004) Visual C++/MATLAB 圖像處理與 識別實用案例精選,人民郵電出版社
- 孫明傳、段艷(2010)基於最小二乘平差的區域網均色 方法研究,2010兩岸非常規攝影測量研討會,台南
- 孫敏(2007)多視幾何與傳統攝影測量理論,北京大學 學報(自然科學版),第43卷,第4期,第453-459 頁
- 張勇、柯濤(2010)基於已有正射影像和 DEM 的航空攝 影空中三角測量,2010 兩岸非常規攝影測量研討會, 台南
- 張豔珍、歐宗瑛(2001)一種新的攝像機線性標定方法,中國圖像圖形學報,第6卷,第8期,第727-731頁
- 陳勉銘、魏正岳、費立沅(2010) 國道 3 號順向坡滑動 的地質解析,地質,第29卷,第2期,第12-15頁
- 陳建州、曾宏正、吳文華、賴國龍、謝昱德(2010)數 位攝影量測技術應用於斜張鋼纜各向振態參數識別之 研究,2010非常規攝影測量研討會論文集,台南
- 葛德治、陳詳凱(2006)三維單粒落石運動軌跡之量測 及計算模式,岩盤工程研討會論文集,台南,第 159-168頁
- 雷成、吳福朝、胡占義(2001) Kruppa 方程與攝像機自 標定,自動化學報,第27卷,第5期,第621-630頁
- 趙曉、黃潤秋、韋穗(2004)基於計算機視覺的地形 3D 重建,地質災害與環境保護,第 15 卷,第 2 期,第 74-77 頁
- 蕭震洋、林伯勳、鄭錦桐、辜炳寰、徐偉城、冀樹勇 (2009)應用光達技術進行集水區土砂運移監測及攔 阻率評估,中興工程季刊,第105期,第17-25頁

賴文能、陳韋志(2010) 淺談 2D 至 3D 視訊轉換技術, 第 23 屆電腦視覺、圖學暨影像處理研討會,高雄 羅佳明(2009) 落石區崖線崩退與崖錐堆積形態之研 究,國立臺灣大學土木工程研究所博士論文,台北

- 蘇泰維、謝有忠、劉榮斌(2010)國道 3 號災前災後的 地形演變,地質,第 29 卷,第 2 期,第 16-19 頁
- 顧承宇、翁孟嘉、高憲彰、陳建忠、李怡先(2006)三 維雷射掃瞄技術於岩坡落石分析之應用,岩盤工程研 討會論文集,台南,第387-396頁
- 顧承宇、陳錦清、王銘德(1996)落石問題之數值模 擬,岩盤工程研討會論文集,台北,第243-252頁

財團法人中與工程顧問社歷年之研發成果,已開發下列電腦程式,對相關工程問題之掌握與分析 精度之提升,有很大助益。若有需要,歡迎洽購。

聯絡電話:(02) 2769-2131 轉 21406 馬小姐

E-M	IAIL	:	pony@	2 sino	tech	i.org.t	W
-----	------	---	-------	--------	------	---------	---

網 址:http://www.sinotech.org.tw

序號	程式名稱	版次
1	台灣基本地理資料供應系統	V2.0
2	高層 RC 建築結構梁柱韌性設計	V1.0
3	泛用型非線性靜動態平面結構分析程式	V1.0
4	深開挖土層參數回饋分析(DEXC-OPT)	V1.0
5	深開挖土層參數回饋分析(RUIP)	V1.0
6	進出港操船模擬分析程式	V1.0
7	預力混凝土中空矩形斷面橋墩重力應變關係分析程式	V1.0
8	單目標多座水庫系統運轉程式(ORES)	V1.0
9	區域流量延時曲線分析程式	V1.0
10	河川水理輸砂及污染值傳輸模式 SEC-HY11	V2.0
11	台灣地區水庫資訊系統	V1.0
12	攔河堰二維水理分析軟體 SEC-HY20	V1.0
13	混凝土非破壞檢測儀 (Sino-NDT-IE) 之改良	V1.0
14	台灣電子地圖網站	V1.0
15	岩盤隧道施工資料自動化處處理	V1.0
16	隧道設計整合系統之發展(二)商業化及應用推廣	V2005 1.0
17	預力預鑄混凝土橋柱分析	V1.0
18	結合 ETABS 之位移法耐震性能設計及評析程式	V2.0
19	地工鑽探助理	V2.0
20	非線性混凝土結構分析系統	V1.0
21	加長型單肋板補強梁柱接頭設計輔助程式	V1.0
22	區域水資源系統即時操作模式建立	V1.0
23	SinoPad 中興現地調查系統	V1.0
24	二維污染值傳輸、輸砂及颱風暴潮模式發展(註)	V2.5
25	柔性加勁檔土牆之設計參數與數值分析方法研究	V1.0
26	台灣地區大眾捷運安全管理系統之建立(一)	V1.0

(註):24序號程式現階段僅開放政府機關申購。